My Research

 

Papers

 

#: This paper is preprint version which may not be identical with published ones which include corrections or supplements. This is based on the copyright agreement: authors retain the right to put preprints in their web page. Thus pay respect to their copyrights. Commercial use is strictly prohibited, and putting this file on other servers is not permitted.

 

Convex Pentagon Tilings and Heptiamonds, II
  Sugimoto, T. and Araki, Y. (2017).

Convex Pentagon Tilings and Heptiamonds, I
  Sugimoto, T. and Araki, Y. (2017).

Properties of Strongly Balanced Tilings by Convex Polygons
  Sugimoto, T.; Research and Communications in Mathematics and Mathematical Sciences, Volume 8, Issue 2, 95-114 (2017). http://arxiv.org/abs/1606.07997

Convex Polygons for Aperiodic Tiling
  Sugimoto, T.; Research and Communications in Mathematics and Mathematical Sciences, Volume 8, Issue 1, 69-79 (2017). http://arxiv.org/abs/1602.06372

Convex Pentagons for Edge-to-Edge Tiling, III (DOI:10.1007/s00373-015-1599-1, pdf(Accepted Version),
  Sugimoto, T.; Graphs and Combinatorics, Volume 32, Issue 2, 785-799 (2016).

• Convex pentagons that can tile the plane (in Japanese)
  Sugimoto, T.; Suugaku seminer (Mathematic seminar), Vol.55. No.1, 44-48 (2015).

• Exact Value of Tammes Problem for N=10
  Sugimoto, T. and Tanemura, M.; http://arxiv.org/abs/1509.01768 (2015).

Tiling Problem: Convex Pentagons for Edge-to-Edge Monohedral Tiling and Convex Polygons for Aperiodic Tiling
  Sugimoto, T.; http://arxiv.org/abs/1508.01864 (2015).

Convex Pentagons for Edge-to-Edge Tiling, II (DOI:10.1007/s00373-013-1385-x, pdf(Accepted Version), pdf(Draft Version)#)
  Sugimoto, T.; Graphs and Combinatorics, Volume 31, Issue 1, 281–298 (2015).

Convex Pentagons for Edge-to-Edge Tiling, I (pdf(Accepted Version) #)
  Sugimoto, T.; Forma, Vol.27. No.1, 93–103 (2012).

Search of Convex Pentagonal Tiling with 5-valent Nodes # (in Japanese)
  Sugimoto, T.; Forma, Bulletin of the Society for Science on Form, Vol.26, 132–144 (2011).

Analysis of Marcia P Sward Lobby Tiling # (in Japanese)
  Sugimoto, T.; Forma, Bulletin of the Society for Science on Form, Vol.26, 122–131 (2011).

Properties of Nodes in Pentagonal Tilings  (ERRATA)
  Sugimoto, T. and Ogawa, T.; Forma, Vol.24. No.3, 117–121 (2009).

Systematic Study of Convex Pentagonal Tilings, II: Tilings by Convex Pentagons with Four Equal-length Edges  (ERRATA)
  Sugimoto, T. and Ogawa, T.; Forma, Vol.24. No.3, 93–109 (2009).

Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere, II: Cases of N = 10, 11, and 12
  Sugimoto, T. and Tanemura, M.; Forma, Vol.22. No.2, 157–175 (2007).

Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere for N = 2,…,9
  Sugimoto, T. and Tanemura, M.; Forma, Vol.21. No.3, 197–225 (2006).

Properties of Tilings by Convex Pentagons  (ERRATA)
  Sugimoto, T. and Ogawa, T.; Forma, Vol.21. No.2, 113–128 (2006).

Systematic Study of Convex Pentagonal Tilings, I: Case of Convex Pentagons with Four Equal-length Edges
  Sugimoto, T. and Ogawa, T.; Forma, Vol.20. No.1, 1–18 (2005).

• Tiling, Packing and Tessellation
  Ogawa, T., Watanabe, Y., Teshima, Y. and Sugimoto, T.; SYMMETRY 2000 Part1, Portland Press Ltd, London, 19–30 (2002).

Random Sequential Covering of a Sphere with Identical Spherical Caps
  Sugimoto, T. and Tanemura, M.; Forma, Vol. 16. No.3, 209–212 (2001).

Tiling Problem of Convex Pentagon  (ERRATA)
  Sugimoto, T. and Ogawa, T.; Forma, Vol.15. No.1, 75–79 (2000).

New tiling patterns of the tessellating convex pentagon (type 6) # (in Japanese)
  Sugimoto, T. and Ogawa, T.; Bulletin of the Society for Science on Form, Vol.15, 10–21 (2000).

inserted by FC2 system